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A complete trace of communication activity for a terascale application is overwhelming in terms of overhead and storage. We 
propose a novel alternative that enables profiling of the application’s communication activity using statistical message sampling 
during runtime. We have implemented an operational prototype and our evidence shows that this new technique can provide an 
accurate, low-overhead, tractable alternative for performance analysis of communication activity. Moreover, this alternative 
enables an assortment of runtime analysis techniques not previously available with post-mortem, trace-based systems. Our 
assessment of relative performance and coverage of different sampling and analysis methods shows that purely random selection 
is preferred over counter- and timer-based sampling. Experiments on several applications running up to 128 processors 
demonstrate the viability of this approach. In particular, on one application, statistical profiling results contradict conclusions 
based on evidence from tracing. The design of our prototype reveals that parsimonious modifications to the MPI runtime system 
could facilitate such techniques on production computing systems, and it suggests that this sampling technique could execute 
continuously for long-running applications. 

1 Introduction 
To fully realize the potential of terascale computing, users must be able to understand the 

performance of their applications. Unfortunately, the scale of new systems, which will have thousands, if 

not millions, of processors [1], is quickly outstripping the capabilities of traditional performance analysis 

techniques. While traditional trace-based techniques for analyzing communication performance of 

distributed applications have demonstrated advantages [6, 10, 11, 14, 15, 17, 18, 21] , their operation on 

terascale platforms presents several challenges. In particular, these techniques require post-mortem 

analysis of potentially massive tracefiles, which, in turn, can lead to high instrumentation overhead and 

perturb performance observations. 

Put simply, this paper proposes a novel alternative that addresses these challenges by enabling 

statistical profiling for individual messages of an application’s communication activity during execution. 

Similar to other statistical profiling techniques [2, 3, 7], our technique strikes a balance between the 

comprehensive detail of tracing and the insight necessary for optimization. Evidence from an operational 

prototype, built on the Message Passing Interface (MPI), shows that this new technique can provide an 

accurate, low-overhead, tractable alternative for performance analysis. Messages can be sampled and 

analyzed with a variety of techniques that are easily interchanged at the MPI profiling layer. Also, this 

alternative enables an assortment of runtime analysis techniques not previously available with post-
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mortem techniques, allowing the prototype to jettison raw performance data as soon as the runtime 

analysis is complete. 

1.1 Motivating Example 

To motivate the demands of performance analysis with large-scale applications, we consider a case 

study of SMG2000, a MPI application that has demonstrated scalability to four thousand processors. 

(Section 4 provides complete details of the experimental evaluation.) The goal of this example is to 

outline the process of traditional performance analysis, highlight its limitations, and argue for statistical 

profiling of communication activity via message sampling. 

Trace-based performance analysis of 

distributed applications is very useful because it 

provides users with detailed chronology of their 

application’s execution [6, 11, 14, 15, 17, 18, 21]. 

The typical operation of a trace-based tool for 

analyzing communication operations on a 

distributed application is a multi-step process as 

illustrated in Figure 1. Assume that the user has 

instrumented their application with software 

instrumentation that captures pertinent 

performance data (achieved by the MPI Profiling 

Layer in Figure 1). As the instrumented application executes on a distributed platform, the 

instrumentation captures significant information (steps � and �) as an event record that includes a 

timestamp, subroutine parameters, and message size. Although each task stores its performance data 

locally on each CPU to limit perturbation to the network, the application does incur some level of 

mandatory overhead from this software instrumentation. At application termination, the tool merges the 

distributed files into one file, reconciling point-to-point communication operations and matching 

collective operations (step �). Clearly, certain types of performance analysis cannot occur until this phase 

because metrics, such as message latency are not available until reconciliation of the event records for 

Post-Mortem

MPI RuntimeMPI Runtime

MPI Profiling LayerMPI Profiling Layer

User ApplicationUser Application

Task 0

MPI RuntimeMPI Runtime

MPI Profiling LayerMPI Profiling Layer

User ApplicationUser Application

Task 1

�

�

�

� �
�

AnalysisAnalysis

MPI_Send

PMPI_Send PMPI_Recv

MPI_Recv

�

Message

Local 
tracefile

Local 
tracefile

Global TracefileGlobal Tracefile

�

�

 

Figure 1: Traditional Performance Analysis of 
Communication Activity. 
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point-to-point messages. Lastly, with the merged file in hand, a user can proceed with the investigation 

with a variety of techniques (step �) including statistical analysis, pattern recognition, automated  

classifiers, and visualization to glean important insights 

into their application performance. Practically all of the 

popular tools in this area rely on visualization to assist users 

in analysis of performance data [11, 20]. 

1.2 Observations 

To make this process more concrete, we apply a widely 

used MPI tracing tool to SMG2000 on 48 tasks. This application sets up and solves a linear system, a task 

common to scientific computing. Our tracing tool interposes instrumentation between the application and 

the MPI runtime using the MPI profiling layer. This instrumentation intercepts significant MPI 

subroutines, captures a timestamp and relevant subroutine parameters, records the event to a memory 

buffer, and eventually, writes them to a local disk file. Most of this instrumentation has been optimized to 

use efficient buffering techniques, low overhead timers, and minimal data collection. This tool 

automatically merges the data into one file at application termination, during which it sorts the events by 

global time, reconciles point-to-point message operations, and calculates communication statistics. 

SMG2000 has an astonishing number of communication operations: it sends approximately 16,000 

messages per task per solve. This volume of message traffic can create very large local and global 

tracefiles. For example, the final, merged tracefile for SMG2000 on 48 tasks is 225MB. More problematic 

is the execution time of SMG2000’s solution phase increases from 26 seconds to 66 seconds. 

Consequently, it increases overhead due to the cumulative effect of the software instrumentation and the 

fact that the buffers must be flushed to disk frequently. Even when a user exercises considerable care in 

focusing the instrumentation on particular subroutines or on limited phases of execution, this situation can 

perturb the underlying application so much that it does not resemble an actual execution of the optimized 

application, especially when tracing a sequence of messaging operations. For instance, Figure 1 illustrates 

a sequence of communication operations that instrumentation perturbation can influence. Once cause of 

performance problems in MPI applications is handling unexpected messages. Typically, users try to 
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Figure 2: Perturbation example. 



SUBMITTED TO SIGMETRICS 2002 

 - 4 - 

optimize their applications by posting receives before their matching sends as for messages � and �. 

Tracing tools would certainly provide insight into this phenomenon; however, the intervening 

instrumentation may very well change a properly posted message into an unexpected message. In this 

example, the cumulative instrumentation of a and b could very well delay the MPI_Recv and make 

message � appear as an unexpected message, when in reality, without instrumentation, it is not. 

Statistical profiling of messages helps to alleviate this issue in two ways. First, it reduces the 

instrumentation overhead because fewer messages are measured. Second, statistical profiling randomly 

distributes the instrumentation overhead across the entire message population, helping to avoid situations 

like the one proposed in Figure 2. 

2 Enabling Runtime Analysis of Communication Activity 
As identified in Section 1.2, one major limitation of current techniques is that most analysis must be 

deferred until the distributed tracefiles can be merged and reconciled. In contrast to these trace-based 

techniques, we propose a new alternative that enables runtime analysis of communication activity by 

appending a tiny amount of performance information to all messages exchanged by the application. Our 

prototype shows that these parsimonious modifications enable runtime analysis and statistical sampling of 

messages, both of which are important elements in eliminating the burdens incumbent on trace-based 

techniques: data management and overhead. 

PHOTON, our operational prototype for statistical sampling of application communication activity, 

focuses on the Message Passing Interface (MPI) [8, 19]. Historically, users have written scientific 

applications for large distributed memory computers using explicit communication as the programming 

model. This trend crystallized with the creation of the Message Passing Interface (MPI) specification [8, 

19], which simplified numerous issues for both application developers and system designers. As a result, 

application developers stabilized on the MPI programming model and this has facilitated the ongoing 

development of a considerable number of applications based on MPI. MPI provides a wide variety of 

communication operations including point-to-point operations, both blocking and non-blocking, and 

collective operations such as broadcast and global reductions. We concentrate on basic point-to-point 
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operations: blocking send, blocking receive, non-blocking send, and non-blocking receive, because they 

are widely used and the most important yet difficult components to sample. 

2.1 Components 

PHOTON’s design has two basic components: a MPI profiling library and a modified MPI runtime 

library. A user application must use both components to benefit from PHOTON features. This design 

minimizes modifications to the underlying MPI runtime, while retaining considerable flexibility for 

selecting sampling and analysis techniques in the MPI profiling layer. Most MPI performance analysis 

techniques use only the MPI profiling layer to gather performance information. 

As Figure 3 illustrates, the first 

component of PHOTON is the modified 

MPI runtime library. Our 

implementation is a fully functional 

version of MPICH 1.2.2, configured to 

use IBM’s Message Passing Library 

(MPL). Our modifications are minimal. 

We change the definition of point-to-

point message headers to include two new fields: a timestamp and a source code location identifier. We 

also modified the send and receive operations for all message protocols. For send operations, the profiling 

layer sets two task variables. When set, the modified send operations copy these two variables into the 

header of the outgoing message. For receive operations, the internal library copies these two variables 

into a modified MPI_Status variable. This new definition of MPI_Status  includes our two new fields, since 

each incoming message must set a status word1. If the incoming message is tagged, then the receive 

operation copies the timestamp and source code location into these two status fields. Otherwise, it ignores 

them. The profiling layer can then easily check these two new fields in the MPI_Status structure to 

determine if, indeed, the send operation tagged the current message. If it did, then the receive operation, 

can extract these two additional fields from the MPI_Status structure, and use them for analysis. 
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Figure 3: PHOTON  Design Overview. 
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Strictly speaking, our limited changes to the MPI runtime system are 1) increased message header 

size by 12 bytes, 2) two writes to these fields in the send operation, 3) two reads of these files in the 

receive operation, 4) one control branch each in the send and the receive operation, and 4) an increased 

size of the MPI_Status structure. As our experimental result show in the next section, this overhead is 

imperceptible in the performance of our MPI implementation. Notice that these changes do not include 

procedure calls, data analysis, or sampling logic. The optional performance analysis tool in the MPI 

profiling layer provides all of these components, if desired. 

The second component of our strategy exploits this additional information by using the MPI profiling 

layer to allow analysis on unmodified application codes. This relinking via the profiling layer interposes 

PHOTON between the application and the MPI runtime system, where PHOTON can intercept all MPI calls 

and record sufficient information about these operations to make reasonable judgments about the 

application performance. 

2.2 Operation 
Given these two components, PHOTON works as illustrated in Figure 3. A message is sent from Task 

0 to Task 1 using MPI’s blocking communication routines. In �, the application prepares the message 

and calls the MPI_Send routine. The MPI_Send routine is intercepted by the MPI profiling layer. At this 

point �, PHOTON uses some technique to decide whether to sample this particular message. Assume that 

it decides to sample the current message. PHOTON then records the start timestamp of the send operation 

and an identifier describing this operation’s location in the source code. Usually, this location is the return 

address of this MPI call; however, it can be a more elaborate hash function that encodes a stack traceback, 

message parameters, etc. PHOTON passes these two additional pieces of information to the MPI runtime 

and calls the name-shifted profiling layer routine, PMPI_Send. As the MPI runtime begins at step �, it 

loads this additional information into the message header of the message envelope that it prepares. It then 

dispatches this message to the underlying message libraries. This operation is similar for all MPI 

protocols. As the tagged message flows across the network at step �, it carries these two additional 

pieces of information with it in its message header. 

                                                                                                                                                             
1 The MPI specification allows users to set MPI_STATUS_IGNORE to bypass the setup of the MPI_Status structure. 
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Meanwhile, Task 1 has issued a blocking MPI_Recv for this message, not knowing if the incoming 

message is a tagged message or not. As the user application calls MPI_Recv at step �, it must post the 

blocking PMPI_Recv at step � without knowledge of the sampling decision. Only when the message is 

received can Task 1 actually make a decision about how to handle this message. It is important to note 

that this problem is impossible to solve for all MPI protocols within the MPI profiling layer alone, and it 

necessitated our modifications to the MPI runtime. 

Now, Task 1 receives the message at step � and it recognizes that this message has been tagged, so 

the MPI runtime copies this information directly into the two additional fields in our modified MPI_Status 

structure. When the MPI runtime completes the receive of this tagged message, it returns from the 

PMPI_Recv into the PHOTON profiling layer. At this point, PHOTON can make any number of decisions 

about how to analyze the tagged message. At �, PHOTON can record statistics and discard the data, write 

it to a trace file, or simply ignore it. When PHOTON has completed its analysis at step �, it returns to the 

user application via the MPI_Recv call. The user application can then process the message as it normally 

would and without regard to the fact that the message was sampled by the underlying performance 

analysis system. 

2.3 Key Design Implications 
This design alternative has a number of important implications. First, message processing is 

undisturbed. Our technique does not require additional messages, additional copying of message buffers, 

or excessive quantities of extra buffer space. Therefore, the MPI behaviors of this alternative should 

closely resemble the behaviors of the original MPI application. Although we considered several options to 

modifying the underlying MPI implementation, none of these strategies provided necessary functionality 

for all MPI operations and respected all of the requirements demanded by the MPI specification, such as 

its message-ordering requirement.  

More specifically, three alternatives come to mind.  In the first alternative, one could simply send an 

extra message following each sampled message. This alternative has two issues: it introduces additional 

messages into the system, and the receiving task has no a priori knowledge of when to wait for a sampled 

                                                                                                                                                             
PHOTON creates a temporary MPI_Status structure and passes this structure to the underlying system. 
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message. This strategy could also introduce race conditions into the application. In the second alternative, 

the system could exchange performance data during collective operations; however, the overhead could 

be noticeable and reconciling sends with receives would still demand comprehensive knowledge of all 

operations. The final alternative is that the technique could use MPI derived types to piggyback additional 

data onto messages. On the face of it, this alternative is appealing. The MPI specification allows nested 

data types, allowing a send operation to simply repackage a message and forward it to the receiver where 

it is unpackaged with the additional performance data. Unfortunately, this alternative has several 

problems. First, MPI derived types can perform poorly because of additional memory copying and 

buffering of data, which might drastically alter the performance characteristics of the application [9]. 

Second, the receiver cannot determine which messages are tagged messages. MPI message envelopes 

specify message source, tag, and communicator, but not data type. This limited information prohibits the 

receiver from determining whether an incoming message is tagged. Therefore, the receive operation has 

no idea of how to prepare the receive buffer. This strategy is also plagued by the possibility of several 

types of race conditions. 

The second important implication is that decisions regarding sampling and analysis techniques remain 

at the MPI profiling layer. Thus, these decisions can be easily interchanged without altering the 

underlying MPI runtime. Better still, by relegating all of these decisions to the profiling layer, the 

performance of the modified MPI runtime can remain practically unchanged from the original. 

The third and final implication is that this design is applicable to all types of point-to-point 

communication regardless of MPI subroutine or message protocol. Take, for example, non-blocking 

communication. PHOTON simply loads the message header during the initiation of the non-blocking 

MPI_Isend. The underlying message library transfers the message normally. As the message is received 

with a MPI_Irecv/MPI_Wait pair, the extra performance information from the message header is transferred 

directly into the MPI_Status structure, which is provided to MPI_Wait as a parameter. This line of reasoning 

holds true for other completion operations including MPI_Test and MPI_Waitsome too because they return a 

MPI_Status structures for completions. 
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3 Statistical Message Sampling 
Although sampling is popular in many other areas of performance analysis, such as procedure 

profiling [3, 7] and instruction analysis using hardware counters [2], it has not been applied to 

communication activity due to the limitations listed in Section 1.2. With the novel alternative proposed in 

Section 2, we can now reliably and accurately access performance information at runtime, so that 

communication performance analysis could benefit equally from statistical sampling. To our knowledge, 

this technique is novel and it represents a significant shift in current technology for performance analysis 

of terascale, distributed applications. Sampling has also been applied at low levels of communication 

activity [5], but this research focused on understanding wide-area networks, rather than on optimizing the 

applications that use those networks. 

3.1 Sampling Strategies 
As Figure 3 illustrates, in step 2, PHOTON can use most any technique to determine how to sample 

messages from the entire message population of the application. Naturally, three different techniques can 

drive our sampling approach: purely random sampling, counter-based sampling, and timer-based 

sampling. 

Random sampling: Our first sampling method is purely random sampling. On every send operation, 

PHOTON draws a number from a uniform distribution in (0,1] and then checks that number against a user 

defined threshold (T) to determine if the current message should be sampled. This strategy is simple and it 

allows a user to easily control the number of samples by changing the threshold, and the instrumentation 

impact on the application. 

Counter-based sampling: In PHOTON, a single counter in each task is incremented for every send 

operation. When the counter exceeds a threshold, one message is sampled, the counter is reset, and a new 

target threshold is calculated. The user can select the period (P) and variance (V) of the counter. Counter-

based sampling benefits from its simplicity and low overhead; however, estimating the appropriate 

settings for P and V can be difficult because it depends entirely on the frequency of application 

communication. 
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Timer-based sampling: Similarly, for timer-based sampling, a message is sampled after a period of 

time has expired since the last send operation. The user specifies a period of time (P) and a variance (V). 

Note that our technique does not use expensive interrupts to execute this sampling technique. Rather, as 

the application calls MPI send routines, PHOTON polls the local time and then decides if the specified 

threshold has been met. Although the cost of sampling the timer can be expensive relative to using 

counters, timer parameters are much easier to estimate and PHOTON must capture this timestamp for the 

outgoing message. 

These methods sample from the entire message population; however, they can also be adapted to 

sample subsets of the population. For instance, we could sample only large messages, only messages sent 

from a certain callsite, or only messages during a certain phase of the application execution. 

3.2 Analysis Methods 

Now that a considerable amount of performance information is available at runtime, PHOTON can 

elect to perform analysis at runtime and jettison the raw performance data. In the context of terascale 

computing, this capability is vital because it eliminates the need for capturing massive tracefiles and 

harvesting important performance data from those files. Certain performance problems may still require 

tracing; however, this runtime analysis can quickly direct further efforts on a subset of operations. 

For performance analysis, our experience indicates that it is important that users are able to map 

performance data back to source code; we record and categorize all messages by source task, destination 

task, callsite location in source and destination, and message size. We capture message latency as our 

primary performance metric, where we define latency as the time from the start of the send operation until 

the end of the matching receive operation. Although this definition is somewhat different than 

architectural definitions, this interpretation is easy for a user to reason about, and it maps directly to the 

user’s source code. Most trace-based tools use similar definitions. 

We introduce two lightweight techniques to analyze this data at runtime and we include a expensive 

technique of writing the event to a local file, as a reference point. 

Statistical summary (STAT): One traditional option for profiling is a statistical summary of the 

messages tabulated by source code locations of the send and receive operations. For our statistical 
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summary, PHOTON captures a maximum, a minimum, a count, and a cumulative total of the message 

latency. With a reasonably long application execution, this statistical information would supply a 

convincingly accurate picture of communication activity. It also has a very small analysis overhead that 

includes locating an entry in a data structure and updating several fields in that entry. This summary when 

combined with the message size and topology information can identify performance anomalies of 

individual message operations. 

Frequency distributions (FREQ): Another valuable technique for analyzing large masses of raw data 

is a frequency distribution. Using a frequency distribution, an analyst can project any number of raw data 

samples into classes, which are easy to represent, understand, and store. These distributions provide more 

information that the statistical summary presented above; however, the overhead for updating the entry 

and the memory requirements are slightly increased. As before, we categorize the data by sender, 

receiver, callsite location for both, and message size. Our implementation creates an array of buckets for 

message latency delimited by a common log scale. Each bucket counter is incremented when a message’s 

latency falls within that bucket’s bounds. 

Write to File (WRITE): Although our main focus for PHOTON is runtime analysis of performance 

data, we can simply use the analysis step write the values to a memory buffer or a file. In contrast to 

traditional tracing, however, this file would not represent a complete chronology of the application’s 

communication behavior, but only a small, sampled portion of the overall communication.  

4 Evaluation 
Our evaluation focuses on our hypothesis that PHOTON can offer a feasible alternative to trace-based 

analysis of message passing applications on terascale platforms. In this regard, we evaluate PHOTON 

along several dimensions: overhead and perturbation, sampling and analysis methods, and improvements 

in data management. Then, we apply PHOTON to several applications in a realistic situation. 

4.1 Platform 
We ran our tests on an IBM SP system. This machine is composed of sixteen 222 MHz IBM Power3 

8-way SMP nodes, totaling 128 CPUs. Each processor has three integer units, two floating-point units, 

and two load/store units. Its 64 KB L1 cache is 128-way associative with 32 byte cache lines and L1 uses 
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a round-robin replacement scheme. The L2 cache is 8 MB in size, which is four-way set associative with 

its own private cache bus. At the time of our tests, the batch partition had 15 nodes and the operating 

system was AIX 4.3.3. Each SMP node contains 4GB main memory for a total of 64 GB system memory. 

A Colony switch--a proprietary IBM interconnect--connects the nodes. We compiled the various tests 

with the IBM XL compilers. Our test jobs ran on dedicated nodes, although other jobs were concurrently 

using the network. We built our prototype of PHOTON with the publicly available version of MPI from 

Argonne National Laboratory: MPICH 1.2.2. We configured MPICH to use IBM’s Message Passing 

Layer (MPL) as the communication substrate. 
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Description 
Original MPI ORIG No No N/A N/A  
MPI Modified to include PP 
information 

NOPROF Yes  No N/A N/A MPI Runtime w/ PHOTON 
modifications. Lacks PP profiling 
layer that includes sampling and 
analysis methods. 

Sampling enabled at various 
random thresholds  

P-X Yes  Yes  Random 
X = threshold 

None Modified MPI with sampling 
infrastructure installed where the 
threshold for random sampling is X. 
No analysis is performed on the 
sampled message. 

Sampling enabled at various 
counter rates  

C-X Yes  Yes Counter 
X = period 

None Modified MPI with sampling 
infrastructure installed where the 
counter-sampling period is X. No 
analysis is performed on the 
sampled message. 

Sampling enabled at various 
timer periods 

T-X Yes  Yes  Timer 
X = period 

None Modified MPI with sampling 
infrastructure installed where the 
timer-sampling period is X. No 
analysis is performed on the 
sampled message. 

Sampling w/ various analysis 
methods 

A-X-B Yes  Yes  A = sampling 
method 
X = threshold 

B is 
print, 
stat, or 
freq 

Modified MPI with sampling 
infrastructure installed where the 
sampling method is A with threshold 
X and the stated analysis B is 
performed on each sampled 
message. 

Table 1: Configuration Overview. 

4.2 Overhead 

Our proposals hinge on the ability of the MPI runtime system to carry a tiny amount of additional 

information with each message. To assess the penalty for this increase in the message header size, we 

compare three versions of MPI as described by Table 1: 1) a version of the original MPI (ORIG); 2) a 

version of the modified MPI the minimal internal changes to the internals, but without the PHOTON 

profiling layer installed (NOPROF); and, 3) a version with both the modified MPI and the PHOTON 
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profiling layer configured to sample no messages (P-0-OFF). For these experiments, we did not perform 

analysis on the resulting sampled message; we consider them in the next section. These experiments 

measure message latency for each configuration using the Pallas PMB-MPI1 PingPong benchmark between 

two SMP nodes across the network.  
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Figure 4: PHOTON  Overhead. Figure 5: PHOTON  Overhead for Counter Sampling. 

As Figure 4 illustrates, the modified version of MPI (NOPROF) performs identically to the original 

version (ORIG). The increase in latency was less than one microsecond for all message sizes. When we 

included the PHOTON profiling library with sampling disabled (P-0-OFF), the overhead increased by 3 

microseconds at a payload size of 4 bytes, though it is only noticeable for smaller messages that have 

fewer than 10,000 bytes. As the message size increases, however, this fixed cost overhead disappears into 

the greater cost of the communication operation, as expected. Although we do expect the overhead for 

PHOTON to be very small for most MPI implementations, the impact of these changes will proportionally 

higher on optimized messaging layers, such as those that use shared memory for intra-node transfers on 

an SMP. Our experiments showed no measurable change in the communication bandwidth across these 

configurations.  

This result is pivotal because it argues that these new features could be included in many MPI 

implementations without mandatory performance degradation. The optional profiling library does inflict a 

small overhead, but it is only noticeable only for small messages. 
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4.3 Sampling Methods 
The various sampling methods introduced in Section 3.1 have different performance penalties and 

dissimilar results with respect to how they sample the message population of the application. All three 

options provide a convenient means to control the number of messages sampled, and we use that feature 

to evaluate each method’s overhead and sample space. We delay discussion of sample space until Section 

0 where we evaluate it on real applications. As shown in Table 1, we vary the threshold (X) for random 

sampling (P-X), the period (X) for counter-based sampling (C-X), and the period (X) for timer-based 

sampling (T-X). Each sampled message is analyzed with the frequency distribution technique. 

First, for counter sampling, we range the period from 2 to 256. Figure 5 illustrates the overhead’s 

explic it variation with the counter period. For a payload of 4 bytes, the latency ranges from 48.7 

microseconds for C-2 down to 40.1 microseconds for C-256. For reference, we include the lower bound 

latency of 37.2 microseconds at 4 bytes for the NOPROF configuration. For applications that send 

messages with payloads of more than 20k bytes, the cost is imperceptible relative to the overall 

messaging cost. 

Next, Figure 6 shows that the overhead for timer-based sampling is less controllable, but it remains 

low. A 4-byte message suffers an increase in latency from 37.2 microseconds for NOPROF to 45.5 

microseconds for T-0.001-FREQ, when messages are sampled at a period of 1 millisecond. Increasing the 

sampling period to 300 milliseconds lowers the latency to 41.8 microseconds. 
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Figure 6: PHOTON  Overhead for Timer Sampling. Figure 7: PHOTON  Overhead for Random Sampling. 
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Last, for random sampling, we range the threshold from 0.01 (1%) up to 0.9 (90%). In Figure 7 

illustrates the overhead’s explicit variation with this threshold range. At 1% for a 4-byte message, the 

latency increases to 43.3 microseconds from 37.2 microseconds for NOPROF. As the threshold increases 

up to 90%, the latency increases to 57.0 microseconds.  

This evidence reveals that all three sampling strategies have a demonstrated variance of overhead 

with respect to message latency.  

4.4  Analysis Methods 

Runtime analysis methods are valuable 

because after the analysis, the raw data can be 

discarded, eliminating many of the problems with 

traditional techniques. However, the analysis 

methods must balance multiple conflicting goals 

of minimizing computation and storage against 

providing enough detailed information for users to 

make proper attribution of performance data. For 

this reason, we evaluate two lightweight statistical analysis techniques and a traditional technique of 

writing the data to a local file. Viewed in this light, it is important to remember that the cost of the 

analysis technique can be balanced against the sampling rates evaluated earlier. If a particular analysis 

method has relatively high cost, then the sampling rate can be lowered to compensate, minimizing the 

overall impact on the application execution. 

As Figure 8 illustrates, the overhead of analysis methods varies considerably; however, our ability to 

change the sampling rates at runtime provides considerable flexibility in balancing this analysis overhead 

with the sampling rate. One important feature of PHOTON is that the performance data can be interpreted 

at runtime, and discarded when the analysis is complete. In Figure 8, we see that the most expensive 

technique is writing a record to a file (P-0.5-WRITE) at 59.9 microseconds, and as we would expect, that 

the lowest overhead occurs when analysis is disabled (P-0.1-OFF). This overhead drops as we decrease 

the random sampling threshold to 10% (P-0.1) from 50% (P-0.5) for each analysis technique. Although 
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Figure 8: PHOTON  Overhead for Analysis Methods. 
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both the statistical summary method and the frequency distribution method yield similar levels of 

overhead, they perform much better that the write technique. 

4.5 Applications 

To verify that our new technique works with real applications, we tested three applications: sPPM 

[16], Sweep3d [13] , and SMG2000 [4]. All of these benchmarks have scaled to thousands of tasks. In 

these examples, we scaled problem sizes with the number of tasks, keeping the amount of work per task 

constant. 

sPPM: sPPM [16] solves a 3-D gas dynamics problem on a uniform Cartesian mesh, using a simplified 

version of the Piecewise Parabolic Method. The algorithm makes use of a split scheme of X, Y, and Z 

Lagrangian and remap steps, which are computed as three separate sweeps through the mesh per timestep. 

Message passing provides updates to ghost cells from neighboring domains three times per timestep.  

SMG2000: SMG2000 [4] is a parallel semicoarsening multigrid solver for the linear systems arising 

from finite difference, finite volume, or finite element discretizations of the diffusion equation 

fuuD =+∇⋅∇ σ)( on logically rectangular grids. The code solves both 2-D and 3-D problems with 

discretization stencils of up to 9-point in 2-D and up to 27-point in 3-D.  
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Figure 9: Number of Messages Sampled on Task 0. Figure 10: Impact of sampling rate on SMG2000 
runtime. 

Sweep3D: Sweep3D [12, 13] is a solver for the 3-D, time-independent, particle transport equation on 

an orthogonal mesh and it uses a multidimensional wavefront algorithm for "discrete ordinates" 

deterministic particle transport simulation. Sweep3D benefits from multiple wavefronts in multiple 
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dimensions, which are partitioned and pipelined on a distributed memory system. The three dimensional 

space is decomposed onto a two-dimensional orthogonal mesh, where each processor is assigned one 

columnar domain. Sweep3D exchanges messages between processors as wavefronts propagate diagonally 

across this 3-D space in eight directions. 

Figure 9 shows the number of messages actually sampled by PHOTON on our three applications, 

where a threshold of 1.0 shows the total number of messages sent from task 0. Here we can also see the 

differences in the number of messages sent by every application. SMG2000 sends 105,000 messages 

whereas sPPM sends only 260. Encouragingly, Figure 9 illustrates that PHOTON can easily change the 

number of messages sampled during an application experiment.  
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Figure 11: Sample Space of Message Population  

Sweep3D and sPPM send relatively few messages; our experiments confirmed that all sampling rates 

less that 50% did not have a noticeable effect on the application runtime. When the sampling threshold 

increased above 50%, the execution time of both applications increased consistently but never more than 

1%.  SMG2000, on the other hand, sends considerable more messages. Figure 10 shows the impact of the 

PHOTON sampling threshold on the SMG2000 runtime, normalized to the NOPROF configuration. We 

see that initially, even at a 1% sampling threshold, SMG2000 experiences a slowdown of 6.1%.  As the 

sampling threshold increases to 90%, the slowdown climbs to 11%. 

Although SMG2000 does incur perturbation on the application runtime, its impact is much less than 

the traditional tracing approach that had a 154% slowdown in execution time. Much more importantly, 
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because PHOTON gathers its information with 

sampling, it helps to avoid pathological 

measurement problems like those mentioned 

in Section 1.2.  

Figure 12 shows a subset of the 

performance data from our experiments on 

SMG2000. The message identifier is a 

distinct identifier hashed from the tuple of 

(source rank, destination rank, source code 

location, destination code location, message 

size). Latency distribution is a frequency 

distribution of the message latency where 

bucket bounds are delimited by a common log scale. 

4.6 Observations 

Our experimental evaluation substantiated many of our claims and it also revealed several issues. 

Among the most important observations exposed by our experiments were that we could significantly 

control the amount of overhead on an application, statistical message sampling reduces the possibility of 

pathological perturbations from instrumentation, our modifications to MPI to enable runtime analysis 

were very small and inflicted no major performance penalty, and statistical profiling can be used on large, 

long-running applications for performance analysis of communication activity. 

Reduced overhead. Our evaluation revealed that we could dramatically control the overhead of 

PHOTON and maintain important information like message latency using statistical profiling. Our 

experiments on real applications and on benchmarks demonstrated that this technique radically diminishes 

the impact of instrumentation on application execution time and message latency. Consequently, these 

variable sampling rates can be balanced against the cost of the analysis technique to compensate.  

Parsimonious modifications to MPI have negligible performance implications. Changes to the MPI 

runtime system were frugal and our evidence indicates that these changes have an almost imperceptible 
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performance penalty for the implementation of PHOTON as the evidence of Section 4.2 demonstrates. 

Control of the sampling and analysis techniques remains in the profiling layer, so that users can simply 

interchange them with their applications to do performance analysis. Indeed, we believe this result argues 

for PHOTON features in production MPI implementations on terascale systems because it will be 

necessary for any performance analysis of communication activity. What is more, with its low overhead 

and amortized perturbation, this technique is also appealing to consider using continuously for large-

scale, long-running applications. 

Reduced data volume. Another goal of this work was to ease the data management burden impose by 

traditional techniques; our experiments on several applications demonstrates that significant, useful 

performance information can be processed dynamically. Because we can calculate message latency 

immediately during runtime, the analysis can proceed immediately, and then discard the raw performance 

data. Our lightweight analysis examples, statistical summary and frequency distribution, showed that 

PHOTON can collect important information from long-running, terascale applications with little overhead. 

Timer-based sampling. We find that our timer-based sampling method can lead to pathological 

situations where only certain messages are sampled. For example, it is common in scientific simulations 

to exchange data with neighbors during one phase of a timestep and compute during the other phase. We 

find that many of our experiments only sample the first communication operation immediately after the 

compute phase, and then miss the remaining send operations that immediately follow it. Our other two 

sampling strategies do not suffer from this deficiency because the variance allows the sampling to break 

out of patterns. More importantly, our random sampling strategy allows a user to simply specify a 

percentage of messages to sample, and PHOTON randomly selects messages without any of these 

concerns. 

5 Conclusions 
As parallel computing systems continue to scale to massive numbers of processors, performance 

analysis techniques must allow users to understand their application’s behaviors. We have proposed and 

evaluated a novel alternative to trace-based, post-mortem performance analysis of communication activity 

in distributed applications. Our alternative for statistical profiling of communication activity included 
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minor modifications to the MPI runtime to enable runtime analysis of performance data and an 

implementation of message sampling. Our operational prototype, PHOTON, demonstrated several 

significant advantages over the traditional trace-based approaches including dramatically lower overhead 

and perturbation, even for applications that communicate frequently. 
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